

YellowScan Mapper+

Advanced performance fitted into a compact survey solution

The YellowScan Mapper+ integrates Livox AVIA laser scanner together with high performance GNSS-aided inertial navigation system into a lightweight, standalone and easy-to-use lidar system.

Proven capabilities and stable results over a wide range of applications.

- High point density
- Lightweight
- > 100 m typ. flying height

- Multirotor drones
- Helicopter drones
- Fixed-wings

Package includes.

Hardware:

- YellowScan Mapper +
- Quick release adapter (DJI skyport or Gremsy)
- Charger and 2 batteries
- GNSS antenna and cable
- 2 USB flash drives
- Rugged backpack

✓ Services:

- 1-year unlimited technical support
- 1-year warranty
- In-person or online training
- Camera & boresight calibration

✓ Software:

- Applanix POSPac UAV, to process GNSS and inertial data for highest accuracy
- YellowScan CloudStation to generate, visualize, adjust strips, classify, colorize and export your georeferenced point cloud

Optional camera module.

Product presentation:

- The camera is a Sony APS-C size Exmor™ CMOS image sensor with a BIONZ X™ processor to produce high-precision 20 MP images.
- The camera module is compatible with the SONY E-Mount and comes with a lens allowing an FOV of 83°.

Built-in camera module:

- Collect LiDAR and RGB data in a single flight
- Data are georeferenced automatically
- No need of pre-flight calibration
- The operation will be as simple as our LiDAR operation: «Just press the Yellow button»

Technical specifications.

Mapper+ LiDAR system

Scanner	Livox AVIA
Wavelength	905 nm
Precision ⁽¹⁾	2.5 cm
Accuracy ⁽²⁾	3.0 cm
Shots per second	240 k
Echoes per shot	Up to 3
Scanner field of view	70.4°

(1) Precision, also called reproducibility or repeatability, accounts for the variation in successive measurements taken on the same target. Here precision value is obtained by averaging the precision from 3 flight levels (@60, 90 and 120m/AGL. At each flight level, the precision is considered as the mean value of absolute elevation differences between 2 flight lines recorded in opposite directions over a nadir-located 40m² hard surface area.

Applanix APX-15 UAV	
L 15 x W 10.4 x H 12.8 cm	
1 hour typ.	
35 W	
1.1 kg battery excl. 1.3 kg battery incl.	
-20 to +40 °C	

(2) Accuracy is the degree of conformity of a measured position to its actual (true) value. Here accuracy value is obtained by averaging the accuracy from 3 flight levels @ 60, 90 and 120mAGL. At each flight level, the accuracy is considered as the RMSE value of the elevation differences between targets and the point cloud extracted from 2 flight lines recorded in opposite directions. Validation targets are located within a 40m wide corridor centered along the flight line axis.

Camera Module

APS-C Type Exmor CMOS	
19.8 Mpx	
Sony E 16mm F2.8	
78 mm	
73 mm	

Depth	82 mm
Weight	305 gr (with camera lens)
Power	Powered by Mapper
Power consumption	2.2 W

Add-ons.

+ Optional software:

- YellowScan LiveStation
- Colorization module: export colorized point clouds from LiDAR + camera acquisition
- Strip Adjustment module: a point cloud enhancing toolbox for the CloudStation software
- Terrain module: export classified point clouds from the CloudStation software

(+) Optional hardware:

- Stand-alone mounting bracket for DJI M600/300
- Stand-alone mounting bracket for DJI M210
- DJI skyport or Gremsy quick release adapters

+ Optional services:

Warranty and technical support extensions

Typical mission parameters.

Mapper+ LiDAR system

FLIGHT SPEED 5m/s	ALTITUDE 100m	POINT DENSITY 340pts/sqm
FLIGHT SPEED 10m/s	ALTITUDE 100m	POINT DENSITY 170pts/sqm
FLIGHT SPEED 20m/s	ALTITUDE 100m	POINT DENSITY 90pts/sqm

Dimensional drawings.

i All dimensions are in millimeters

Mapper+ side view

Mapper+ front view

Camera module front view

Mapper+ bottom view

Camera module side view

▶ Camera module top view

